
Non-photorealistic rendering and model viewer

Alejo Antonio Salvador

May 2, 2022

1 Introduction

There are several motivations for generating images that do not pretend to simulate reality. These reasons can range
from aesthetics to the increased visual clarity obtained through outlines and a simpler shading. In this project I will
analyze some ways to tackle this problem and describe the model viewer that is used to show these various techniques.

2 Model viewer with realistic lighting

The model viewer used as a basis for this project has a isometric projections and the rotations are expressed in Euler
Angles. There is diffuse, specular, ambient and fresnel lighting.
For all of these calculations the normal used was an interpolation between the normal vectors of all the vertices of the
current triangle.
Diffuse lighting is calculated as the product of the surface color and the dot product between the normal vector and
the light direction.
For the specular lighting the Blinn-Phong model was used. It uses the halfway vector between the viewer and light-
source vectors and it uses it to obtain the dot product between it and the normal vector. This result is then elevated
to an exponent depending on the intensity of the specular reflection. This value is finally multiplied by the color of
the refraction (white in this case).
The ambient light was just set as 0.3 times the diffuse color of the material.
The last component of this lighting model was the fresnel light (rim lighting). It is used to recreate the effect of light
filtering through the contour of the object. It is really useful to accentuate the borders of the model when trying to
create a non-realistic renderer. Its intensity is obtained as 1.0 minus the dot product of the viewer vector and the
normal vector. This value was then multiplied by the diffuse component to reduce its intensity if light is not hitting
that area and make sure that shadowed areas are not lighted by it.
A final but vital component of this lighting model are dynamic shadows. To achieve them I rendered the model
again from the light’s perspective. I used an orthographic projection since it is better to represent the parallel rays
of directional light. In this way I will get a shadow map in which I will have the depth of the closest part to the
light source in each pixel. This will be our shadow map which I will use in the lighting process when I render from
the viewer perspective to shadow the correct areas. I will shadow any pixel where its depth from light perspective is
higher than the depth of its corespondent pixel in the shadow map.
After implementing this the shadows can already be seen. However, there is still an annoying artifact called shadow
acne (figure 1) that happens because there is a difference between the depth of the pixel in the shadow map and
the depth obtained in the fragment shader in the final calculation. This happens because many vertexes can
map to the same pixel causing a lose of precision. This gets clearly worse as the light angle become more steep
since more vertexes will map to the same pixel. An easy solution for this problem would be using a bias to
make sure that areas where the difference in depth is small are not shadowed. I will use the following formula
max(0.01 ∗ (1.0− dot(normalV ector, lightDirection)), 0.001) to make sure that the bias gets bigger as the light angle
get steeper.
Another important component of the rendering process is HDR tone mapping. As we can see the addition of all
these light components can make the value of a light channel bigger than 1 and therefore I would lose color informa-
tion. I don’t care about oversaturating the area through specular and fresnel ligthing since saturating the channel
is part of the intended look. However, I don’t want the addition of the diffuse and ambient to exceed 1.0 in any
color channel. To achieve this I will use Reinhard tone mapping applying the following operation on each channel:
HDRcolor(1+ HDRcolor

whiteColor2
)

1+HDRcolor where HDRcolor is the color before mapping and whiteColor is the treshold I want to set
as white. An important aspect to mention is the fact that the mapping was done directly on the channel instead
of doing it by using luminance. The reason for doing that is that it prevents every channel from being saturated.
However, it also removes saturation from the brightest areas modifying the color slightly but I consider it a feature
more than a problem. This is discussed in more detail in the case of filmic tone mapping in Jhon Hable blog at
http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/

One last step would be gamma correction. It is very important because all these calculations assume that color is
lineal but it is actually not in a monitor. Because of this, most assets are made with the gamma of the artist’s monitor

1

http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/


(usually around 2.2). Therefore I need linearize the textures first for calculations. After all work is done with the
linearized colors I need to map the colors again to the gamma of the user’s monitor. The formula to map the colors
to the gamma of the monitor is pow(linearColor, vec4(1.0/2.2))
Let see how it looks before using various techniques to achieve the cartoon look (figure 2).

Figure 1: Shadow acne
Figure 2: A model without using the non realistic shading
techniques

3 Non-realistic rendering

3.1 Cel-shading

Cel-shading is the act of tresholding the color transition in such a way that there is a limited number of lighting levels
on the image. Since this is the way in which most pictures are hand drawn, it is really useful to achieve a feeling of
a flat hand drawn image. It is achieved though setting a threshold for every type of lighting previously mentioned in
such a way that the area is lit with a given intensity if the original intensity is greater than a given value. I made the
number of splits used in cel-shading for diffuse and specular lighting configurable. Ambient light was just set as the
color for areas not lighted and a base to which diffuse and specular lighting is added.
Diffuse was implemented trough tresholding the cosine of the angle between the normal vector and the light source
since this is what determines the intensity of light. By tresholding this angle instead of the resulting diffuse color this
makes sure that the lighting level of the area in cel-shading only depends on the original lighting level and not the
color of the texture on the surface.
Specular lighting was implemented in a similar way but the angle used is the one between the normal vector and the
halfway vector between the viewer and light source vectors.
Finally rim (Fresnel) light intensity was calculated by just tresholding it before multiplying it with the diffuse lighting
since that is the moment where the value stored is its intensity.

Figure 3: Without cel-shading Figure 4: With cel-shading

Comparasion of cel-shading character

2



Figure 5: Without cel-shading Figure 6: With cel-shading
Comparasion of cel-shading for specular light

3.2 Drawing the outline

There are many ways to draw the outline of a 3d model. They can be either achieved in object-space or in screen
space. One of the most used object space methods is the inverted hull one but it has the problem that it is not too
effective for models not specifically made for it since it does not draw some interior lines and the width of the lines
are inconsistent. Other object space solutions I found didn’t achieve the look I was searching for. Therefore, I decided
to implement 2 different screen space solutions.
To implement these 2 solutions I need to get a depth and normal vector buffers during the rendering of the image to
utilize later on the calculations. It is very important to mention than I need to linearize the depth because the depth
stored in the buffer is not the real one but instead the one that is obtained through the matrix projection. To do so, I
first to need to remap the depth to the range [-1,1] since webGL automatically maps it to the range [0,1] when passing
the depth from the vertex shader to the fragment shader. With that done we apply the formula
linearizedDepth = 2∗nearP lane∗farP lane

farP lane+nearP lane−depth∗(farP lane−nearP lane)

With that done lets see how to use that information to detect the borders. The first one consisted on identifying the
areas were the depth change suddenly. However, this solution had the problem that it was too sensible in areas were
the objects surface are close to parallel to the view vector. This is because if that happens there will always be a huge
variation in depth between two adjacent pixels.
To fix this problem I implemented another solution that took into account both normal vectors, depth and the position
to find the planes tangent to the surface. In this way a pixel will be part of the outline if the distance between the
position of the vertex represented there and the planes that correspond to the adjacent pixels is greater than a fixed
threshold value.
In the two methods I used the discrete Laplace operator since it achieved a look extremely similar to the sobel operator
with one less pass required. One problem usually present for the Laplace operator is that it is extremely sensible to
noise (this is usually fixed through Gaussian sound) but since I’m working with depth and normal vectors the curves
should be relatively smooth except for the cases where I effectively want to draw an outline.
Both of this methods present some problems in low-poly models since there is a relatively steep difference between
the normal vectors and depth of 2 adjacent vertex. However, this can be easily fixed by setting the correct threshold
depending on the size of the polygons in the model.
There are some cases where thicker outlines are wanted. The solution used to achieve this is just saving the outline
in a different buffer by itself and then placing in each pixel the darkest color between all of the neighbours. Therefore
each pass of this process increase the width of the outlines by two.
Finally, it is important to mention that the method relying on normal vectors allows me to set a smaller threshold
without seeing annoying artifacts since it is less sensible to the viewing angle. The difference between both of this
methods can be seen in figures 4, 5, 6 and 7.

Figure 7: Depth difference Figure 8: Tangent Planes distance
Huge difference in the artifacts shown in the leg of the model

3



Figure 9: Depth difference Figure 10: Tangent Planes distance

Level of precision for small details

3.3 Applying a paper texture

One thing useful to convey the feeling of this being a hand drawn image is using a grey-scale texture to convey the
inherent rugosity of canvas paper. This is achieved though an image space transformation. To do so the color of the
pixels corresponding to the 3d model are multiplied by the color of the paper texture by using alpha multiplication and
setting the alpha coefficient with a paper transparency parameter. In areas where there are not pixels corresponding
to the model the paper texture is shown directly.
The image shown in figure 11 will not have a color texture applied to make the paper texture effect more noticeable

Figure 11: Paper texture applied

3.4 Simulating pencil stroke

There are many ways to simulate the strokes of pencils or pens. One way to do so is through a sequence of mip-
mapped hatch images corresponding to different tones, collectively called a tonal art map (SIGGRAPH2001). However
I decided against using it since I wanted to go for a look closer to the one used in TV animation or some game like
Valkyria Chronicles characterized by using parallel lines in shadowed areas. I also used another kind of parallel lines
on the rest of the surface to give it look more like a sketch. Both of this techniques were used in the game previously
mentioned. However, I made one change from the game since the game presents problem called “shower-door effect”
which is the illusion that the user is viewing the scene through a sheet of semi-transmissive glass in which the strokes
are embedded. To fix this problem I decided to move the background image together with the translation of the object.
I did not care about rotations since this problem is not as evident in them. It is important to take into account the
depth of the object since the displacement in screen space does not correlate directly with the displacement in object
space in the perspective projection. Instead it depends on the depth of that specific part of the object. The formula
used to do this correction is trans/linearDepth ∗ 0.5 where trans is trans is the XY translation and linearDepth is the
depth linearized.
The problem with this correction is that, as you translate the object, new areas on the side of the object that were
not previously seen can now be seen because of perspective. For this reason, this areas do not adjust correctly with
the formula used and therefore deform lines slightly and they stop being straight. However, I consider this problem
to be less noticeable than the shower-door effect.
Let’s see how the model looks with the pencil stroked applied to it. The first image will show how the model looks with
this effect applied without translation. The second one will show the problem present when the model is translated
enough to notice the deformation of the stroke lines.

4



Figure 12: without deformation of translation Figure 13: with translation deformation
deformation of pencil lines when translating

4 Resulting render and future work

When combining all the different rendering stages used for achieving this sketch book look the resulting image is very
different than before and it conveys the look of something hand drawn way better as it can be seen in the next images.

Figure 14: basic ”realistic” rendering Figure 15: non-realistic rendering

Some things to improve in this work would be fixing the deformation of the lines because of translation or imple-
menting the cross hatching presented in SIGGRAPH2001 or NPAR2002. It would also be nice to implement a model
loader able to load models with different materials since this change would improve greatly the images presented here.

References

[1] Symposium on Non-Photorealistic Animation and Rendering (NPAR) 2002, 53-58.

[2] Common Techniques to Improve Shadow Depth Maps. https://docs.microsoft.com/en-us/windows/win32/
dxtecharts/common-techniques-to-improve-shadow-depth-maps

[3] Filmic Tonemapping with Piecewise Power Curves. John Hable http://filmicworlds.com/blog/

filmic-tonemapping-with-piecewise-power-curves/

[4] Implementing a “sketch” style of rendering in webGL. https://medium.com/cbrebuild/

implementing-a-sketch-style-of-rendering-in-webgl-d6f0e4685a17

[5] Emil Praun, Hugues Hoppe, Matthew Webb, Adam Finkelstein. ACM SIGGRAPH 2001 Proceedings, 581-586.

5

https://docs.microsoft.com/en-us/windows/win32/dxtecharts/common-techniques-to-improve-shadow-depth-maps
https://docs.microsoft.com/en-us/windows/win32/dxtecharts/common-techniques-to-improve-shadow-depth-maps
http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/
http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/
https://medium.com/cbrebuild/implementing-a-sketch-style-of-rendering-in-webgl-d6f0e4685a17
https://medium.com/cbrebuild/implementing-a-sketch-style-of-rendering-in-webgl-d6f0e4685a17

	Introduction
	Model viewer with realistic lighting
	Non-realistic rendering
	Cel-shading
	Drawing the outline
	Applying a paper texture
	Simulating pencil stroke

	Resulting render and future work

